






[ \*Patent approval ]

Taiwan patent number: 1637420

United States patent number: US10170266B2 China patent number: ZL201780088781.6

Japan patent number: 6836669

# **Applications**

- · Lighting devices
- · Motor start-up protection
- Power supplies & Power adapters
- · High rush current protection for power capacitor

# **Specifications Per**

• IEC 60115-1, 60115-4

# **Features**

- Worldwide patent pending
- Enhanced welded spot is reliable against surge
- Fast-acting fuse device for high-power applications
- Advanced combined anti- surge & fast-fuse structure
- Excellent in heat dissipation than chip resistor
- Stronger mechanical structure to endure vibration and thermal shock
- Flameproof multi-layer coating equivalent to UL 94 V-0
- Flameproof feature equivalent to overload test UL 1412
- Thermal fuse to protect against over-heating in electronic products
- SMD enabled structure
- RoHS / REACH Compliant

### DIMENSIONS

| Туре    | Body Length<br>(L, mm) | Body Diameter<br>(D, mm) | Soldering Spot<br>(B, mm) |
|---------|------------------------|--------------------------|---------------------------|
| SWMT100 | 8.50 ± 0.5             | $3.0 \pm 0.2$            | 1.3 Min.                  |
| SWMT200 | 10.5 ± 0.5             | 4.0 ± 0.5                | 1.6 Min.                  |
| SWMT300 | 12.6 ± 0.6             | 4.6 ± 0.5                | 1.8 Min.                  |
| SWMT400 | 14.6 ± 0.6             | 5.1 ± 0.5                | 2.0 Min.                  |

#### ■ GENERAL SPECIFICATIONS

| Туре    | Power<br>Rating<br>( at 70°C ) | Maximum<br>Working<br>Voltage* | Maximum<br>Overload<br>Voltage** | Maximum<br>Permissible<br>Surge<br>Voltage | Minimum<br>Resistance | Maximum<br>Resistance | Resistance<br>Tolerance | Available<br>Resistance<br>Values |
|---------|--------------------------------|--------------------------------|----------------------------------|--------------------------------------------|-----------------------|-----------------------|-------------------------|-----------------------------------|
| SWMT100 | 1W                             | √PxR                           | 2.5x√PxR                         | 7.5KV                                      | 1 Ω                   | 470Ω                  | ± 5%                    | E-24                              |
| SWMT200 | 2W                             | √PxR                           | 2.5x√PxR                         | 8.5KV                                      | 1 Ω                   | 470Ω                  | ± 5%                    | E-24                              |
| SWMT300 | 3W                             | √PxR                           | 2.5x√PxR                         | 9KV                                        | 1 Ω                   | 470Ω                  | ± 5%                    | E-24                              |
| SWMT400 | 4W                             | √PxR                           | 2.5x√PxR                         | 11KV                                       | 1 Ω                   | 470Ω                  | ± 5%                    | E-24                              |

<sup>\*</sup> Rated Continuous Maximum Working Voltage (RCWV) should be determined from RCWV = \( \sqrt{Power Rating x Resistance Values} \)

<sup>\*\*</sup> Short-time Overload (STOL) test should be determined from STOL=2.5 × RCWV

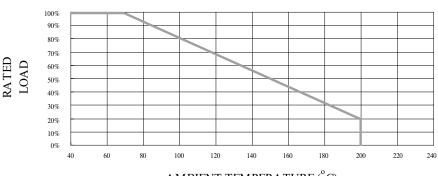




#### PART NUMBER

Example: SWMT200J2R80TKZBK2K0

| SWMT200 | J         | 2R80                                                                                                                                                             | TKZ                                                                                                                                                                                       | BK2K0                                                                                                                                             |
|---------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре    | Tolerance | Resistance                                                                                                                                                       | TCR                                                                                                                                                                                       | Packaging                                                                                                                                         |
|         | J (5%)    | 2.8Ω  4-character code containing - 3 significant digits 1 letter multiplier  OHM MULTIPLIER  R = 1  K = 10 <sup>3</sup> M = 10 <sup>6</sup> G = 10 <sup>9</sup> | 3-character code  TKZ = Default Product Temperature Coefficient.  Information of typical product temperature coefficient can be found in the Technical Summary section of the datasheet.* | 5-character code  TR= Tape Reel (pieces per reel)  SWMT100  2K5=2,500  SWMT200  2K0=2,000  BK = Bulk  SWMT100/SWMT2  SWMT300/SWMT4  BK + Quantity |


<sup>\*</sup> For the availabilities of non-default temperature coefficient, please check with us.

## **■ TECHNICAL SPECIFICATIONS**

| Characteristics                        |                  | Limits                                                                            |  |  |
|----------------------------------------|------------------|-----------------------------------------------------------------------------------|--|--|
| Temperature Coefficient, PPM / °C*     |                  | ±100, ±200                                                                        |  |  |
| Operating Temperature Range, °C        |                  | -55~+200                                                                          |  |  |
| Insulation Resistance, MΩ              |                  | 104                                                                               |  |  |
| Fusing Characteristics** (Preliminary) | constant voltage | Interrupts in max. 15 seconds at 40 times rated power                             |  |  |
|                                        | thermal fuse     | Interrupts in max. 5 minutes at 3.5 times rated amp at 265°C (special requesting) |  |  |

<sup>\*</sup> Not applicable to all resistance values. Please check with us regarding the PPM of specific resistance value(s).

#### POWER DERATING CURVE



AMBIENT TEMPERATURE (°C)

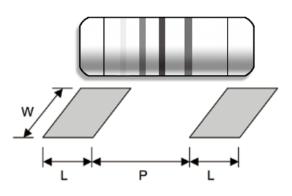
www.firstohm.com.tw grc@firstohm.com.tw

<sup>\* \*</sup> Recommended to install a fuse holder if fusing function is required







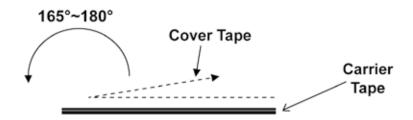

## **■ PERFORMANCE SPECIFICATIONS**

| Characteristics              | Test Conditions                                                                                                                                                      | Limits            |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Short Time Over Load         | IEC 60115-1 4.13 5 seconds 2.5x rated voltage (not over max. overload voltage)                                                                                       | ±3%               |
| Load Life In Humidity        | IEC 60115-1 4.24 56 days rated load (not over max. working voltage) at (40±2)°C and (93±3)% relative humidity                                                        | ±5%               |
| Load Life                    | IEC 60115-1 4.25.1 Rated load (not over max. working voltage) 1,000 hours with 1.5 hours ON, 0.5 hours OFF, at (70±2)°C                                              | ±5%               |
| Resistance To Soldering Heat | IEC 60115-1 4.18.2 Dip the resistor into a solder bath measured (260±5)°C and hold it for a 10±1 seconds                                                             | ±3%               |
| Solderability                | IEC 60115-1 4.17.2 Solder area covered after (230±3)°C/(2±0.2) seconds with flux applied                                                                             | 95% min. coverage |
| Vibration                    | IEC 60115 4.22 Six hours in each parallel and axial direction with a simple harmonic motion having an amplitude of 0.75mm and 10 to 500 Hz.                          | ±0.25%            |
| Thermal Endurance            | IEC 60115-1 4.25.3<br>1000 hours at 125°C without load                                                                                                               | ±5%               |
| Thermal Shock                | IEC 60115-1 4.19<br>-55°C 30minutes, +155°C 30minutes, 5 cycles                                                                                                      | ±5%               |
| Surge Test                   | Proprietary test speci ication FRC-TR-010113 = √(8,000 PR) DC P is power rating, R is resistance value.  Surge spec = 1.2/50μs Period = 60 sec Number of surges = 10 |                   |





## **■ SUGGESTED PAD LAYOUT**

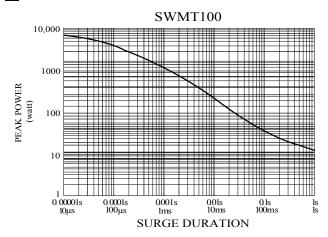


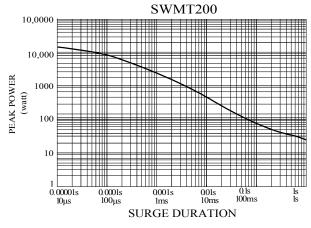

| Туре    | Soldering Mode*                       | Pad Length<br>(L, mm, Min.) | Pad Spacing<br>(P, mm) | Pad Width<br>(W, mm, Min.) |
|---------|---------------------------------------|-----------------------------|------------------------|----------------------------|
| SWMT100 | Reflow (Solder thickness recommended) | 3.0                         | 4.9 ± 0.3              | 3.7                        |
|         | Wave                                  | 3.5                         | $4.8 \pm 0.3$          | 4.0                        |
| SWMT200 | Reflow (Solder thickness recommended) | 4.0                         | 6.2 ± 0.4              | 5.0                        |
|         | Wave                                  | 4.5                         | $6.0 \pm 0.4$          | 5.0                        |
| SWMT300 | Reflow (Solder thickness recommended) | 4.5                         | $8.0 \pm 0.4$          | 5.5                        |
|         | Wave                                  | 5.0                         | $7.7 \pm 0.4$          | 5.5                        |
| SWMT400 | Reflow (Solder thickness recommended) | 5.0                         | 9.3 ± 0.4              | 6.5                        |
|         | Wave                                  | 5.0                         | $9.0 \pm 0.4$          | 6.0                        |

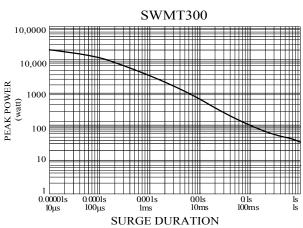
For better heat dissipation / lower heat resistance, increase W & L. \*Wave soldering is highly recommended for all SWMT types.

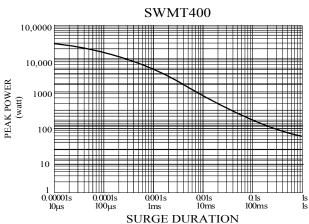
## **COVER TAPE PEELING SPECIFICATION**

Recommended peeling force: SWMT100, SWMT200: 70±10gf SWMT300, SWMT400: 80±10gf

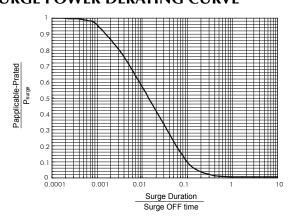




www.firstohm.com.tw grc@firstohm.com.tw




### **■ SINGLE SURGE PERFORMANCE**










# SURGE POWER DERATING CURVE



#### **Notes:**

- SINGLE SURGE PERFORMANCE graph is good for NON REPETITIVE applications operating in an ambient temperature of 70°C or less. For temperatures above 70°C, the graph power must be derated further linearly down to zero at 150 °C.
- To determine applicable surge power in continuous-surge applications:
- 1. Identify allowable duration and peak power  $P_{\text{surge}}$  of single surge;
- 2. Determine ratio of surge duration/surge OFF time in application;
- 3. Calculate P<sub>applicable</sub> backwardly according to Y-axis of SURGE POWER DERATING CURVE.